Quantitative unique continuation for spectral subspaces of Schrödinger operators with singular potentials

نویسندگان

چکیده

Recent (scale-free) quantitative unique continuation estimates for spectral subspaces of Schrödinger operators are extended to allow singular potentials such as certain Lp-functions. The proof is based on accordingly adapted Carleman estimates. Applications include Wegner and initial length scale random control theory the controlled heat equation with generation term.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schrödinger Operators with Singular Potentials †

We describe classical and recent results on the spectral theory of Schrödinger and Pauli operators with singular electric and magnetic potentials

متن کامل

On Spectral Theory for Schrödinger Operators with Strongly Singular Potentials

We examine two kinds of spectral theoretic situations: First, we recall the case of self-adjoint half-line Schrödinger operators on [a,∞), a ∈ R, with a regular finite end point a and the case of Schrödinger operators on the real line with locally integrable potentials, which naturally lead to Herglotz functions and 2× 2 matrix-valued Herglotz functions representing the associated Weyl–Titchmar...

متن کامل

Schrödinger operators with oscillating potentials ∗

Schrödinger operators H with oscillating potentials such as cos x are considered. Such potentials are not relatively compact with respect to the free Hamiltonian. But we show that they do not change the essential spectrum. Moreover we derive upper bounds for negative eigenvalue sums of H.

متن کامل

Spectral gaps of Schrödinger operators with periodic singular potentials

By using quasi–derivatives we develop a Fourier method for studying the spectral gaps of one dimensional Schrödinger operators with periodic singular potentials v. Our results reveal a close relationship between smoothness of potentials and spectral gap asymptotics under a priori assumption v ∈ H loc (R). They extend and strengthen similar results proved in the classical case v ∈ L loc (R).

متن کامل

Spectral Analysis of Relativistic Atoms – Dirac Operators with Singular Potentials

This is the first part of a series of two papers, which investigate spectral properties of Dirac operators with singular potentials. We examine various properties of complex dilated Dirac operators. These operators arise in the investigation of resonances using the method of complex dilations. We generalize the spectral analysis of Weder [50] and Šeba [46] to operators with Coulomb type potenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2023

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2023.05.046